Chapter 3

Control
Statements

Learning Objectives

After completing this chapter, you will be able to:
* Understand flowcharts.

* Understand control structures.

Understand sequential control statements.

* Understand decision control statements.

* Understand loop control statements.

* Understand jump statements.

* Understand logical operators.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-2 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

In this chapter, you will learn about the flowcharts and the control structures.

FLOWCHART

A flowchart is a graphical representation of the steps that constitute a program. It shows how
the control moves in a program. A flowchart is drawn using some special symbols, which are
as follows:

Oval

The oval symbol represents the start and the end of the program. The symbol is as follows:

[)

Figure 3-1 An oval symbol

Rectangle

The rectangle symbol represents the process box in which actions such as calculations are
performed. The symbol is as follows:

Figure 3-2 A rectangle symbol

Diamond

The diamond symbol represents the decision box in which a condition is checked. The symbol
is as follows:

Figure 3-3 A diamond symbol

Arrow

The arrow symbol represents the path through which the control passes from one symbol to
another symbol. The symbol is as follows:

—

Figure 3-4 An arrow symbol

Control Statements 3-3

Parallelogram

The parallelogram symbol represents the input or the output box. The symbol is as follows:

[/

Figure 3-5 A parallelogram symbol

CONTROL STRUCTURES

The programs, during execution, may need to take decisions and repeat a particular block of
code a number of times. C+ + provides control structures or control statements that specify
the order of the execution of the statements. The control structures control the flow of the
execution in a program. The control structures are of three types:

a. Sequential control structure
b. Selection or Decision control structure
c. Repetition, Iteration, or Loop control structure

Sequential Control Structure

In a sequential control structure, the program statements are executed one after the other in
the same order as they appear in the program. In all programming languages, the sequential
control is used as the default control. All the programs that have been described in the
earlier chapters are sequential.

Selection or Decision Control Structure

The selection or decision control structure is used to alter the flow of control in a program.
The flow of control depends on the result of a particular condition applied to it. C+ + supports
three different types of selection control structures:

a. 1if statement
b. if-else statement
c. switch statement

The if Statement

The if statement is a single path statement, which means it will execute a statement or a block
of statements only if the condition is true. The syntax for the if statement is as follows:

if(condition or expression)
statement];

In the above syntax, the condition or expression can be true or false. If the condition or
expression is true, statementl will be executed. Otherwise, the control will be transferred to
the next statement after the if block.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-4 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

In case there is more than one statement that must be executed if the condition is true, then
the statements should be grouped together in braces {}. The syntax for the if statement is as
follows:

if(condition or expression)

{
statement 1;
statement 2;
statement n;
}

In the above syntax, all the statements from 1 to n will be executed, if the condition or
expression within the if statement is true. Otherwise, they will not be executed and the control
will be transferred to the next statement after the if block.

The following example illustrates the use of the if statement.

Example 1

Write a program to find the greater of the two numbers.

The following program will prompt the user to enter two numbers, compare them, and
display the greater of the two on the screen. The numbers on the right are not a part of the
program and are for reference only.

//Write a program to find the greater of the two numbers
#include<iostream>
using namespace std;
int main()
{
int a,b;
cout< <“Enter two numbers” < <endl,
cin>>a>>b;
if(a>b)
cout<<“a is greater than b”<<endl;
cout<<“b is greater than a”<<endl;
return 0;

© 00 IO Ok O N —

ke
N = O

}

Ju—
o

Explanation

Line 6

int a,b;

In this line, a and b are declared as integer type variables.

Control Statements 3-5

Line 7

cout< <“Enter two numbers”’ < <endl;

This line will display the following on the screen:
Enter two numbers

Line 8
cin>>a>>b;
This line is used to accept the values of variables a and b from the user.

Line 9

if(a>b)

In this line, the if statement is used to check the
condition whether it is true or false. If the condition
a>b (ais greater than b) is true, the next line (line 10)
will be executed. Otherwise, line 10 will be skipped
by the compiler and the control will be transferred to
line 11.

numbers
Line 10
cout<<‘“a is greater than b”’<<endl;
This line will display the following on the screen:

a is greater than b

Line 11

cout<<‘b is greater than a”<<endl;

This line will display the following on the screen:
b is greater than a

The output of the program is:
Enter two numbers

3

2

a is greater than b Figure 3-6 Flowchart of Example 1

The flowchart in Figure 3-6 gives a diagrammatic
representation of the program described in Example 1.

The if-else Statement

The if-else statement is a dual path statement, which means if the condition given within the
if statement is true, the statements associated with the if block will be executed. Otherwise,
the statements associated with the else block will be executed. The syntax for the if-else
statement is as follows:

if(condition or expression)
{
statement 1;
statement 2;

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-6 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

}
else
{
statement 3;
statement 4;
}

In the above syntax, if the given condition or expression is true, statements 1 and 2 will be
executed and the else block will be skipped. Otherwise, the if block will be skipped and the
statements 3 and 4, which are associated with the else block, will be executed.

The following example illustrates the use of the if-else statement.
Example 2
Write a program to find the greater of the two numbers by using the if-else statement.

The following program will prompt the user to enter two numbers, compare them, and
display the greater of the two on the screen.

//Write a program to find the greater of the two numbers 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int a,b; 6
cout< <“Enter two numbers”<<endl; 7
cin>>a>>b; 8
if (a>b) 9
cout<<“a is greater than b” <<endl; 10
else 11
cout<<“b is greater than a” <<endl; 12
return 0; 13
} 14
Explanation
Line 6
int a,b;

In this line, a and b are declared as integer type variables.

Line 7

cout< <“Enter two numbers” < <endl;

This line will display the following on the screen:
Enter two numbers

Control Statements 3.7

Line 8
cin>>a>>b;
This line is used to accept the values of variables a and b from the user.

Line 9

if (a>b)

In this line, the if statement is used to verify whether the condition within the if statement is
true or false. If the condition a>b (a is greater than b) is true, the next line (line 10) will be
executed. Otherwise, line 10 will be skipped and the control will be transferred to line 11.

Line 10

cout<<‘“a is greater than b” <<endl;

This line will display the following on the screen:
a is greater than b

Line 11

else

This statement and the block of code
associated with this will be executed only if the
condition given in the if statement is false. (CStart)
Otherwise, the whole else block will be
skipped.

Enter two
numbers

Line 12

cout<<‘b is greater than a” <<endl;

This line will display the following on the
screen:

b is greater than a

The output of this program is as follows: - -
a is greater b is greater
Enter two numbers than b than a
2
3
End

b is greater than a

The flowchart in Figure 3-7 gives a
diagrammatic representation of the program
described in Example 2.

Figure 3-7 Flowchart of Example 2

Nested-if statement

When an if statement is used within another if statement, the resulting statement is known
as a nested-if statement. In the nested-if structure, the last else statement is always associated
with the if block that precedes it. The syntax for the nested-if statement is as follows:

if(condition)
{

if(condition)

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-8 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

{
statements;
if(condition)
else
{
statements;
}
}

}
The following program illustrates the use of the nested-if statement.
Example 3
Write a program to find the greatest of the three numbers by using the nested-if statement.

The program given next will prompt the user to enter three numbers, compare them, and
display the greatest of the three numbers on the screen.

//Write a program to find the greatest of the three numbers 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int a,b,c; 6
cout< <“Enter three numbers” < <endl; 7
cin>>a>>b>>c; 8
if(a>b) 9

{ 10

if(a>c) 11

{ 12

cout<<“a is the greatest number”<<endl; 13

¥ 14

else 15

{ 16

cout<<“c is the greatest number” < <endl; 17

} 18

} 19

else 20

{ 21

if(b>c) 22

{ 23

cout< <“b is the greatest number” < <endl; 24

} 25

else 26

{ 27

cout<<“c is the greatest number” < <endl; 28

Control Statements 3-9

i 29
i 30
i 31
Explanation
Line 6
int a,b,c;

In this line, a, b, and ¢ are declared as integer type variables.

Line 7

cout< <“Enter three numbers” < <endl;

This line will display the following on the screen:
Enter three numbers

Line 8
cin>>a>>b>>c;
This line is used to accept the values of variables a, b, and ¢ from the user.

Line 9

if(a>b)

In this line, the if statement is used to check whether the value of variable a is greater than
the value of variable b. If the condition is true, the control will be transferred to line 11.
Otherwise, the control will be transferred to line 20.

Line 10
{

This line indicates the start of the if statement (line 9).

Line 11

if(a>c)

If the condition given in line 9 is true, the control will pass to line 11. Otherwise, this line will
be skipped by the compiler. In this line, the if statement is used to check whether the value of
variable a is greater than the value of variable c. If the condition is true, the control will be
transferred to line 13. Otherwise, the control will be transferred to line 15.

Line 12
{

This line indicates the start of the if statement (line 11).

Line 13

cout<<‘“a is the greatest number”’ < <endl;
This line will display the following on the screen:
a is the greatest number

Line 14
}

This line indicates the end of the if statement (line 11).

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-10 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

Line 15

else

If the condition given in line 11 is true, the control will pass to line 15. Otherwise, the entire
else block will be skipped by the compiler.

Line 16
{

This line indicates the start of the else statement (line 15).

Line 17

cout< <‘c is the greatest number” < <endl;
This line will display the following on the screen:
c is the greatest number

Line 18
}

This line indicates the end of the else statement (line 15).

Line 19
}

This line indicates the end of the if statement (line 9).

Line 20

else

This else block is associated with the if statement given in line 9. If the condition given in
line 9 is false, the control will pass to the else statement. Otherwise, the entire else block will
be skipped by the compiler.

Line 22

if(b>c)

In this line, the if statement is used to check whether the value of variable b is greater than
the value of variable c. If the condition is true, line 24 will be executed. Otherwise, it will be
skipped and the control will be transferred to line 26.

Line 24

cout< <“b is the greatest number” < <endl;
This line will display the following on the screen:
b is the greatest number

Line 26

else

This else block is associated with the if statement given in line 22. If the condition given in
line 22 is false, the control will pass to the else statement. Otherwise, the entire else block
will be skipped by the compiler.

Control Statements

3-11

Line 28

cout< <‘“c is the greatest number”’ < <endl;
This line will display the following on the screen:
c is the greatest number

The output of the program is as follows:
Enter three numbers

12

23

34

c is the greatest number

The output will be displayed on the screen as follows:

e+ "g:\C++\C++_programs\Ch_03\ch03_pr... lE E

nter three numbers
2

3
4
is the greatest number
ress any key to continue

|41 | t

The flowchart in Figure 3-8 gives a diagrammatic representation of the program described

in Example 3.

Enter three
numbers

c is the
greatest number

e

Yes

a is the End b is the
greatest number, greatest numbe

Figure 3-8 Flowchart of Example 3

%

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-12 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The else if Statement

The else if statement is a conditional statement that is used when you want to verify more
than one condition. The working of the else if statement is the same as that of the if statement,
except that the else if statement must be preceded by an if statement. The syntax for the else
if statement is as follows:

if(condition)
statementl;
else if(condition)
statement2;
else
statement3;

In the above syntax, the condition given in the if statement is checked if it is true or false. If
the condition is true, statementl will be executed. Otherwise, the condition given in the else
if statement will be checked. If it is true, statement?2 will be executed. Otherwise, statement3
will be executed.

The following program illustrates the use of the else if statement.
Example 4
Write a program to display the grades based on the points scored by the user.

The following program will prompt the user to enter the points scored, calculate the grades,
and display the equivalent grade on the screen.

//Write a program that displays the grades according to the points scored 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int points_scored; 6
cout<<“Enter the points scored”<<endl; 7
cin>>points_scored; 8
if(points_scored>=90) 9

cout< <“Grade A”<<endl; 10

else if(points_scored>=280) 11

cout< <“Grade B”<<endl, 12

else if(points_scored>=70) 13

cout< <“Grade C’<<endl; 14

else 15

cout< <“FAIL’ < <endl; 16

return 0; 17

Control Statements 3-13

Explanation

Line 6

int points_scored;

In this line, points_scored is declared as an integer type variable.

Line 7

cout<<“Enter the points scored” < <endl;
This line will display the following on the screen:
Enter the points scored

Line 8
cin>>points_scored;
This line is used to accept the value of the variable points_scored from the user.

Line 9

if(points>=90)

In this line, the condition (the value of the variable points_scored is greater than or equal to
90) within the if statement is checked. If the condition is true, the next statement (line 10)
will be executed. Otherwise, the next statement (line 10) will be skipped and the control will
be transferred to the else-if statement (line 11).

Line 10

cout< <“Grade A”<<endl;

This line will display the following on the screen:
Grade A

Line 11

else if(points_scored>=80)

If the condition given in the if statement is false, the control will pass to linell. In this line,
the condition (the value of the variable points_scored is greater than or equal to 80) within
the else-if is checked. If the condition is true, line 12 will be executed. Otherwise, the control
will be transferred to line 13.

Line 12

cout< <“Grade B”’<<endl;

This line will display the following on the screen:
Grade B

Line 13

else if(points_scored>="70)

If the condition given in line 11 is false, the control will pass to this line (line 13). In this line,
the condition (the value of the variable points_scored is greater than or equal to 70) within
the else if is checked. If the condition is true, line 14 will be executed. Otherwise, the control
will be transferred to line 15.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-14 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

Line 14

cout< <“Grade C”’<<endl;

This line will display the following on the screen:
Grade C

Line 15

else

If the compiler cannot find any conditional match in the program, the control will be
transferred to line 15 and the statements associated with it will be executed.

Line 16

cout< <“FAIL’< <endl;

This line will display the following on the screen:
FAIL

The output of the program is as follows:
Enter the points scored

85

Grade B

The output will be displayed on the screen as follows:

et "c:\C++\C++_programs\Ch_03\ch03_... [M[=] [
nter the points scored -
5

rade B
ress any key to continue_

K | a7

The switch Statement

The switch statement is a selection or a case control statement, which makes it possible for
the compiler to transfer the control to different statements within the switch body depending
on the value of a variable or expression. In a switch statement, the flow of execution is
controlled by a value of the variable or expression. This variable or expression is known as
the control variable. In the same switch body, two case constants cannot have identical values.
Also, the upper and lowercase character constants are differentiated by the compiler.

The syntax for the switch statement is as follows:
switch(expression)

case constant 1:
statement;
break;

case constant 2:
statement;

Control Statements 3-15

break;

case constant n:
statement;

break;

default: /Optional
statement;

}

In the above syntax, the value of the switch expression is matched with the case constants
one by one. If a match is found, the control will be transferred to the statement associated
with that particular case label. If no match is found, the default case will be executed in case
it exists. If, on the other hand, a match is not found and also there is no default case in the
switch body, no case will be executed.

In the above code, the break statement is optional. The break statement is used to transfer
the control to the end of the switch body. If the break statement is not used in the switch
body, then all the cases from the one matched will be executed.

The following example illustrates the use of the switch statement without using the break
statement.

Example 5
Write a program to display a message according to the value entered by the user.

The following program will prompt the user to enter a number, compare it with the given
cases, and display the statement associated with the particular case.

//Write a program that illustrates the use of the switch statement 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int i; 6
cout< <“Enter a number” < <endl,; 7
cin> >1; 8
switch(i) 9

{ 10

case 1: 11

cout< <“GOOD MORNING” < <endl, 12

case 2: 13

cout<<“GOOD AFTERNOON”< <endl, 14

case 3: 15

cout<<“GOOD EVENING” < <endl, 16

case 4: 17

cout<<“GOOD NIGHT”< <endl; 18

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-16 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

default: 19
cout< <“HAVE A NICE DAY” < <endl; 20
} 21
return 0; 22
} 23
Explanation
Line 6
int i;

In this line, i is declared as an integer type variable.

Line 7

cout< <“Enter a number” < <endl;

This line will display the following on the screen:
Enter a number

Line 8
cin> >1i;
This line is used to accept the value of the variable i from the user.

Line 9

switch(i)

In this line, the switch statement is used to match the value of the variable i with all the case
constants one by one. If a match is found, the control will be transferred to the statement
associated with that particular case.

Line 10
{

This line is used to indicate the start of the switch body.

Line 11

case 1:

This line begins with the case keyword, which is followed by an integer value (1). This value
is matched with the value of the control variable (i). If a match is found, line 12 will be
executed. Otherwise, the control will be transferred to case 2.

Line 12

cout< <“GOOD MORNING” < <endl;

This line will display the following on the screen:
GOOD MORNING

The functionality of lines 13 to 18 is the same as that of lines 11 and 12.

Line 19

default:

In this line, the default keyword is used. If no match is found, the code or statement associated
with the default case will be executed. This statement is optional.

Control Statements

3-17

Line 20

cout<<“HAVE A NICE DAY” < <endl;
This line will display the following on the screen:
HAVE A NICE DAY

The output of the program is:
Enter a number

2

GOOD AFTERNOON
GOOD EVENING
GOOD NIGHT
HAVE A NICE DAY

Note

In this program, no break statement has been used. Therefore, all the cases from the one matched,
mcluding the default, are executed, as shown in the output of the program.

The following example illustrates the use of the switch statement with the break statement.

Example 6

Write a program to display a message according to the value entered by the user.

The following program will prompt the user to enter a number, compare it with the given

cases, and display the statement associated with the particular case.

//Write a program that illustrates the use of the switch statement

//with a break statement
#include <iostream>
using namespace std;
int main()

{

nt i;

cout< <“Enter a number” < <endl,

cin> >1;

switch(i)

{
case 1:
cout< <“GOOD MORNING” < <endl;
break;
case 2:
cout<<“GOOD AFTERNOON” < <endl,
break;
case 3:
cout< <“GOOD EVENING” < <endl;
break;

© 00 IO Otk 00N —

e b e et et e e e
© 0T Tk OO N — O

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-18 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

case 4: 20

cout< <“GOOD NIGHT”<<endl; 21

break; 22

default: 23

cout< <“HAVE A NICE DAY” < <endl; 24

} 25

return 0; 26

} 27

The functioning of Example 6 is the same as Example 5. In Example 6, the break statement
has been used. As a result, the program executes only the matched case and its associated
statements. For example, if the user enters 3, only case 3 will be executed and all the other
cases will be skipped by the compiler.

The output of the program is as follows:
Enter a number

2

GOOD AFTERNOON

The output will be displayed on the screen as follows:

ot "e:\C++\C++_programs\Ch_03\cho3_... =T

nter a number

00D AFTERNOON
ress any key to continue

[« I

The flowchart in Figure 3-9 gives a diagrammatic representation of the program described
in Example 6.

Control Statements 3-19

No
Have a nice da

Figure 3-9 Flowchart of Example 6

Repetition, Iteration, or Loop Control Structure

Loops are used to repeat a particular block of code for a certain number of times. The block
of code is repeated while the condition is true. If the condition is false, the loop ends and the
control is transferred to the next statement immediately after the loop. In C++, there are
the following three kinds of loops:

1. while loop
2. for loop
3. do-while loop

The while Loop

The while loop is a flow control statement that is used to execute a particular block of code as
long as a certain condition is true. The while loop is mostly used in cases when you do not
know how many times the loop will be repeated. The syntax for the while loop is given next.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-20 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

while(condition)
{

statement or block of code;
}
In the above syntax, the condition within the while statement is evaluated first. If the condition
is true, the next statement or the block of code is executed. This code will be repeated until
the condition evaluates to false.
The following example illustrates the use of the while loop.
Example 7

Write a program to illustrate the working of the while loop.

The following program will prompt the user to enter a number, compare it with a particular
condition, and display the resultant value on the screen.

//Write a program that will prompt the user to enter a number

//and then repeat the block of code until it is not equal to zero. 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
intn=1; 6
while(n!=0) 7
{ 8
cout< <“Enter a value” < <endl, 9
cin>>n; 10
cout<<“The value entered by you is: ”<<n<<endl; 11
} 12
cout<<“Exit from the while loop” < <endl; 13
return 0; 14
} 15
Explanation
Line 7
int n=1;

In this line, n is declared as an integer type variable and the value one is assigned to it.

Line 8

while(n!=0)

From this line, the while loop begins. The code associated with the while statement will be
executed as long as the condition n!=0 (n is not equal to zero) is true. In this program, the
variable n is initialized to one, as mentioned in line 7. So the code associated with the while
statement must be executed at least once and then the control will be transferred to line 9.

Control Statements 3-21

Line 9

cout< <“Enter a value” <<endl;

This line will display the following on the screen:
Enter a value

Line 10
cin>>n;
This line is used to accept the value of variable n from the user.

Line 11

cout< <“The value entered by you is: ’<<n<<endl;
This line will display the following on the screen:

The value entered by you is: value of the variable n

Line 13

cout< <“Exit from the while loop” < <endl;

When the while condition is false, the control is directly transferred to this line. This line will
display the following on the screen:

Exit from the while loop

The output of the program is

as follows:

Enter a value

. CsrD
The value entered by you is:

4

Enter a value :ltglﬂllze
0

The value entered by you is:
0
Exit from the while loop

Exit from the
while loop

End

Enter a value

The flowchart in Figure 3-10
gives a diagrammatic
representation of the
program described in

Example 7 The value entered
’ by you is: n

Figure 3-10 Flowchart of Example 7

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-22 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The for Loop

The for loop is also a flow control statement that is used to execute a particular block of code
for a specific number of times. The for loop is mostly used when you know the number of
times the body of the loop will be executed. The for loop is easy to understand because all the
control elements (initialization, condition, and increment or decrement) are placed together
at one place. The syntax for the for loop is as follows:

for(initialization; condition; increment or decrement)

In the above syntax, the for loop consists of three expressions: initialization, condition, and
increment or decrement. These three expressions must be separated by using a semicolon

G)-

Initialization Expression
The initialization expression executes only once at the start of the loop. It is used to set the
initial value of the loop control variable such as int x=1.

Condition Expression

The condition expression is evaluated each time before the execution of the body of the loop.
The execution of the body of the loop depends on the condition whether it is true or false. If
the condition is true, the body of the loop will be executed. Otherwise, it will be skipped and
the control will be transferred to the next instruction after the for loop.

Increment or Decrement Expression

The increment or decrement expression is used to increase or decrease the value of the loop
control variable by one or some other value, which is specified by the programmer.
This expression is always executed after the body of the loop has been executed.

The following example illustrates the use of the for loop.
Example 8
Write a program to display the multiplication table of a number.

The following program will prompt the user to enter a number, calculate its multiples, and
display the table on the screen.

//Write a program that displays the multiplication table of a number 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int num,i,c; 6
cout< <“Enter a number”<<endl; 7
cin>>num; 8
cout< <“The multiplication table is as follows: ”<<endl; 9
for(i=1;i<=10;i++) 10

Control Statements 3-23

{ 11

c=num®*i; 12

cout< <c<<endl; 13

} 14

return 0; 15

i 16
Explanation

Line 6
int num,i,c;
In this line, num, i, and c are declared as integer type variables.

Line 7

cout< <“Enter a number” < <endl;

This line will display the following on the screen:
Enter a number

Line 8
cin>>num;
This line is used to accept the value of variable num from the user.

Line 9

cout<<‘“The multiplication table is as follows: ”<<endl;
This line will display the following on the screen:

The multiplication table is as follows:

Line 10

for(i=1;i<=10;i++)

This line shows the working of the for loop. The variable i (loop control variable) is initialized
to one and the condition i<=10 is checked. If the condition is true, the body of the loop will
be executed and the control will be transferred to line 12. Otherwise, the body of the loop
will be skipped and the control will be transferred to line 15.

Line 12

c=num¥*i;

In this line, the value of the variable num is multiplied by the value of variable i and the
resultant value is assigned to the variable c.

Line 13

cout< <c<<endl;

This line will display the following on the screen:
Value of the variable ¢

The output of the program is as follows:
Enter a number

3

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-24 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The multiplication table is as follows:
3
6
9
12
15
18
21
24
27
30

The output will be displayed on the screen as follows:

ev " \C++\C++_programs\Ch_03\ch03_pro0B\Debug\c...

nter a number -

he multiplication tahle is as follows:

[SEXENTEIT N

ress any key to continue

14 | a1V

The flowchart in Figure 3-11 gives a diagrammatic representation of the program described
in Example 8.

Multiple Im.tlallzatlon .
You can specify more than one expression ?
in the initialization part and as well as the
increment/decrement part by separating / Enter a number/
them using the comma operator (,). Also, i
you can have only one condition / Input num /
expression in the for loop.
For example: =1 7T i<m10 2L
i++ T
for(x=0,y=50;x!=y;x++,y--) lYes
{ —num* End
body of the loop; emnm

}

In this example, the variable x is initialized

f Value of ¢ ;
to zero and y is initialized to fifty. In the

increment/decrement part, the variable x Figure 3-11 Flowchart of Example 8
is incremented by one and y is

Control Statements 3-25

decremented by one. There is only one condition expression x!=y (x is not equal to y).
The body of the loop will be executed until the given condition becomes false.

You can also skip some or all the expressions of the for loop. The syntax is as follows:
for(;;)

If you skip the condition expression, it is assumed to be true. Now, the loop works similar
to the infinite loop.

For example:

for(i=1; ;i++)
{
body of the loop;

}

In the above example, the variable i is initialized to one and the condition part is skipped.
So, the condition will always be assumed as true and the body of the loop will be executed
indefinitely. The value of the variable i is incremented by one after every execution of the
loop body.

Nested for Loop
A nested for loop is a loop within the body of another loop. In the nested for loop, the outer
loop takes control over the inner loop. The syntax is as follows:

for(i=0;i<5;i++) //Outer loop
{
for(j=0;j<5;j++) //Inner loop
{

body of the loop;
}

In the above syntax, when the execution begins, the compiler first encounters the outer loop.
If the condition in the outer loop is true, the control will be transferred to the inner loop.
When the execution of the inner loop is complete, the control will be transferred back to
the increment/decrement part of the outer loop. This process is repeated until the outer
loop finishes or the condition in the outer loop becomes false.

The following example illustrates the use of the nested for loop.

Example 9

Write a program to display a right-angled triangle made of star (*) characters.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-26 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The following program will display the right-angled triangle of the star characters on the
screen.

//Write a program to display a right angled triangle of stars (*) 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int i,j; 6
for(i=0;1<5;i+ +)//outer loop 7
{ 8
for(j=0;j<=1;j+ +)//inner loop 9
{ 10
cout< < * 7 11
}//End of inner loop 12
cout<<endl; 13
}//End of outer loop 14
return 0; 15
} 16
Explanation
Line 7

for(i=0;i<5;i++)

From this line, the outer for loop begins. The variable i is initialized to zero. Next, the
condition i<5 is checked whether it is true. If the condition is true, the control will be
transferred to the inner loop (line 9). After the completion of the inner loop, the control will
be transferred back to the increment/decrement part of the outer loop. If the condition is
false, the body of the outer loop will be skipped and the control will be directly transferred to
line 15.

Line 8
{

This line indicates the start of the body of the outer for loop.

Line 9

for(j=0;j<=i;j++)

From this line, the inner for loop begins. This loop is controlled by the outer loop. If the
condition in the outer loop is true, the control is transferred to this loop. Otherwise, this loop
will be skipped. If the condition in the inner loop is true, the body of the loop will be
executed and the control will be directly transferred to line 11. Otherwise, the body of the
inner loop will be skipped and the control will be transferred back to the increment/decrement
part of the outer loop.

Line 10
{

This line indicates the start of the body of the inner for loop.

Control Statements

Line 11
cout< <¢ * 7%

This line will display the following star character on the screen:

*

Line 12
}

This line indicates the end of the body of the inner loop.

Line 13
cout<<endl;

This line is used to display the next statement from the new line.

The output of the program is as follows:

ES

k ok
ook sk
ok sk sk
ok sk ok ok

The output will be displayed on the screen as follows:

s "e:MC++NC++_programs\Ch_03\ch03_pro... !E x'

any key to continue_

< |

»

A

The flowchart in Figure 3-12 gives a diagrammatic representation of the program described

in Example 9.

(Start)
i=0 — No
- Is i<5 ?
i++ — ™
Yes
=0 — 1=
] s j<=i ?
T
Yes

Yes

Control transfers to
the next line

Figure 3-12 Flowchart of Example 9

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-28 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The do-while Loop

The do-while loop is similar to the while loop, except that in the do-while loop, the body of
the loop is executed first and the condition is checked at the end. Therefore, the body of the
loop must be executed at least once. The while statement should be terminated with a
semicolon (;). The syntax is as follows:

do

{
body of the loop;

}
while(condition);
In the above syntax, the body of the loop is executed first and then the condition is checked.

If the condition is true, the body of the loop will be executed again. This process is repeated
until the condition becomes false.

The following example illustrates the use of the do-while loop.
Example 10
Write a program to illustrate the working of the do-while loop.

The following program will prompt the user to enter a number, compare it with a particular
condition, and display the resultant value on the screen.

//Write a program that will prompt the user to enter a number

//and then repeat the block of code until it is not equal to zero. 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int n; 6
do 7
{ 8
cout< <“Enter a value” < <endl, 9
cin>>n; 10
cout<<“The value entered by you is: "<<n<<endl; 11
} 12
while(n!=0); 13
cout<<“Exit from the loop” <<endl; 14
return 0; 15
} 16
Explanation
Line 6
int n;

In this line, n is declared as an integer type variable.

Control Statements 3-29

Line 7

do

This line is the start point of the do-while loop. The statements associated with the do statement
will be executed first and then the condition within the while expression will be checked.

Line 8
{

This line indicates the start of the do-while body.

Line 9

cout< <“Enter a value” <<endl;

This line will display the following on the screen.
Enter a value

Line 10
cin>>n;
This line is used to accept the value of a variable n from the user.

Line 11

cout< <“The value entered by you is: ’<<n<<endl;
This line will display the following on the screen.

The value entered by you is:

This is followed by the value of variable n

Line 12

}
This line indicates the end of the do-while body.

Line 13

while(n!=0);

The statements associated with the do loop must be executed at least once and then the
condition given within the while statement will be checked. If the condition (n is not equal to
zero) is true, the body of the loop will be executed again. Otherwise, the control will be
transferred to the next statement following the while statement.

The output of the program is as follows:
Enter a value

3

The value entered by you is: 3

Enter a value

0

The value entered by you is: 0

Exit from the loop

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-30 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The flowchart in Figure 3-13 gives a diagrammatic representation of the program described
in Example 10.

Enter a value

The value entered
by you is: n

End

Figure 3-13 Flowchart of Example 10

Jump Statements

The jump statements transfer the control unconditionally to some other part in a program.
In C++, there are four types of jump statements:

break
continue
goto
return

00 ho —

The break Statement

The break statement is used to exit from any kind of loop such as for, while, and do-while or
the switch statement. Alternatively, it is used to transfer the control to the next statement
immediately after the loop or the switch statement.

The following example illustrates the use of the break statement.

Example 11

Write a program to illustrate the working of the break statement.

The following program will terminate the execution of the inner loop when the values of the
control variables of the outer and the inner loop are equal. This program will also display the
values of the variables i and j on the screen.

//Write a program that terminates the execution of the inner loop when the
//values of the control variables of the outer and the inner loop are equal. 1
#include <iostream>

using namespace std; 3

Control Statements 3-31

int main() 4
{ 5
int i,j; 6
for(i=0;1<2;i+ +)//outer loop 7
{ 8
tor(j=2;j>=0;j--)//inner loop 9
{ 10
if(i==j)//Innermost statement 11
{ 12
cout<<“The values of i and j are equal”’<<endl; 13
break; 14
} 15
cout< <“The value of 1 is: "< <i<<endl; 16
cout< <“The value of j is: "< <j<<endl; 17
} 18
cout<<“Exit the inner loop” <<endl; 19
} 20
return 0; 21
b 22
Explanation
Line 6
int i,j;

In this line, i and j are declared as integer type variables.

Line 7

for(i=03i<=2;i++)

From this line, the outer loop begins. The variable i is initialized to zero. Next, the condition
i<=2 is checked whether it is true or false. If the condition is true, the control will be transferred
to the inner loop (line 10). After the completion of the inner loop, the control will be transferred
back to the increment/decrement part of the outer loop. If the condition is false, the body of
the outer loop will be skipped and the control will be directly transferred to line 20.

Line 8
{

This line indicates the start of the body of the outer loop.

Line 9

for(j=2;j>=0;j--)

From this line, the inner loop begins. This loop is controlled by the outer loop. If the condition
in the outer loop is true, the compiler encounters this loop. Otherwise, this loop will be
skipped. If the condition in the inner loop is true, the body of the loop will be executed and
the control will be directly transferred to line 12. Otherwise, the body of the inner loop will
be skipped and the control will be transferred back to the increment/decrement part of the
outer loop.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-32 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

Line 10
{

This line indicates the start of the body of the inner loop.

Line 11

if(i==j)

In this line, the if statement is used to check whether the value of the variable i is equal to the
value of the variable j. If the condition is true, the statements associated with the if statement
will be executed. Otherwise, these statements will be skipped.

Line 12
{

This line indicates the start of the body of the if statement.

Line 13

cout< <“The values of i and j are equal ” <<endl;
This line will display the following on the screen:
The values of i and j are equal

Line 14
break;
The break statement will transfer the control outside the innermost statement.

Line 15
}

This line indicates the end of the body of the if statement.

Line 16

cout< <*“The value of i is: "< <i<<endl;

This line will display the following on the screen:
The value of i is:

This is followed by the value of the variable i

Line 17

cout<<“The value of j is: ”<<j<<endl;

This line will display the following on the screen:
The value of j is:

This is followed by the value of variable j

Line 18
}

This line indicates the end of the body of the inner loop.

Line 19

cout< <“Exit the inner loop” < <endl;

This line will display the following on the screen:
Exit the inner loop

Control Statements 3-33

Line 20
}

This line indicates the end of the body of the outer loop.

The output of the program is as follows:
The value of i is: 0

The value of j is: 2

The value of i is: 0

The value of j is: 1

The values of i and j are equal
Exit from the inner loop

The value of i1s: 1

The value of j is: 2

The values of i and j are equal
Exit from the inner loop

The continue Statement

The continue statement is similar to the break statement except that instead of exiting from
the loop, the continue statement transfers the control back to the top of the loop for the
next iteration. It will skip the remaining part of the body of the loop.

For example:

for(i=0;i<=10;i++)

{
statement 1;
ifi==5)
continue;
statement 2;
i

In the above example, when the value of the variable i is equal to five, the continue statement
will be executed. The statement 2 will be skipped and the control will be transferred back to
the increment part of the for statement for the next iteration.

The following example illustrates the use of the continue statement.

Example 12
Write a program to terminate the execution of the inner loop using the continue statement.
The following program will terminate the execution of the inner loop when the values of the

control variables of the outer and the inner loop are equal. This program will also display the
values of the variables i and j on the screen.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-34 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

//Write a program that terminates the execution of the inner loop when the

//values of the control variables of the outer and the inner loop are equal. 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int i,j; 6
for(i=0;i<=2;i++)//outer loop 7
{ 8
for(j=2;j>=0;j--)//inner loop 9

10

if(i==j)//Innermost statement 11

{ 12

cout< <“The values of i and j are”; 13

cout<<* equal”’<<endl; 14

continue; 15

} 16

cout<<“ The value of 1 is: ” << 1 <<endl; 17

cout< <" The value of j is: 7 << j <<endl; 18

} 19

cout<<“Exit the inner loop” <<endl; 20

} 21

return 0; 22

} 23

Explanation

The working of Example 12 is the same as Example 11 except that in the former the continue
statement is used. When the condition (i==j) is true, the statements associated with the if
statement will be executed. Next, the continue statement will be executed, which ends the
current iteration of the inner loop. Also, the control is transferred back to the decrement
part of the inner loop for the next iteration.

The output of the program is as follows:
The value of i is: 0

The value of j is: 2

The value of i is: 0

The value of j is: 1

The values of i and j are equal
Exit from the inner loop

The value of iis: 1

The value of j is: 2

The values of i and j are equal
The value of iis: 1

The value of jis: 0

Exit from the inner loop

Control Statements 3-35

The values of i and j are equal
The value of iis: 2

The value of j is: 1

The value of iis: 2

The value of j is: 0

Exit from the inner loop

The goto Statement

The goto statement allows the program control to jump unconditionally to another part of
the program, which is associated with the named label. A label is an identifier followed by
a colon (:). The syntax is as follows:
goto label;
The following example illustrates the use of the goto statement.
Example 13

Write a program to illustrate the working of the goto statement.

The following program will terminate the execution of the loop when the value of the control
variable is equal to five. It will then display a message on the screen.

//Write a program that terminates the loop

//when the value of the control variable is equal to five 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int i;//Control variable 6
for(i=1;i<=10;1++) 7
{ 8
if(i==>5) 9
goto stop; 10
cout< <“The value of 1 is: "< <i<<endl; 11
} 12
stop: 13
cout< <“Label is encountered”; 14
return 0; 15
i 16
Explanation

Line 7

for(i=1;i<=10;i++)

When the compiler executes this line, the variable i is initialized to one and the condition
i<=10 is checked. If the condition is true, the body of the loop will be executed and the
control will be transferred to line 9. Otherwise, the body of the loop will be skipped.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-36 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

Line 9

if(i==5)

In this line, the value of variable i is checked to see if it is equal to five. If this condition is
true, the control is transferred to the next line, which is a goto statement.

Line 10

goto stop;

In this statement, stop is used as a label. When this statement is executed, the control will be
transferred to the statement (line 14) associated with the label.

Line 11

cout< <*“The value of i is: "< <i<<endl;

This line will display the following on the screen:
The value of 1 is: value of the variable 1

Line 14

cout< <“Label is encountered”;

This line will display the following on the screen:
Label is encountered

The output of the program is as follows:
The value of 11s: 1

The value of 11s: 2

The value of 1 1s: 3

The value of 11s: 4

Label is encountered

The return Statement

The return statement stops the execution of a function and the control returns to the calling
function. Now, the execution will begin from the next statement that immediately follows the
call in the calling function. The syntax is as discussed next.

return expression;
In the above syntax, the expression represents the value that is returned to the calling function.
The return statement is of two types, one returns some value and the other returns void (nothing).
The functions whose return type is void does not have any return statement. For example:
void sum()//Calling function
{
int c= a+b;

cout<<c;
return;//Optional because of the void function

Control Statements 3-37

In this example, the void specifies to the compiler that no value is returned to the calling
function by the return statement. You can also use the return statement without specifying
any value or expression.

The functions whose return type is not void, must have the return statement that returns
some value or expression. For example:

int main()
{

body of the program;
return 0;

In the above example, the return type of the main function is int (Integer). So, the return
statement returns some integer value to the main function.

LOGICAL OPERATORS

You have already learned about the logical operators in the earlier chapters. In this section,
you will learn about the usage of logical operators with the help of a programming example.
The syntax for the logical AND operator is as follows:

expression]l && expression2

In the above syntax, if both the expressions, expressionl and expression2, are true the
operator will return true, otherwise false.

The syntax for the logical OR operator is as follows:
expressionl || expression2

In the above syntax, if either of the expressionl or expression? is true, the operator will
return true, otherwise false.

The syntax for the logical NOT operator is as follows:

! expression
In the above syntax, if the expression is true, the operator will return false. If the expression
is false, the operator will return true. This operator reverses the resultant value of the
expression.
The following example illustrates the use of the logical operators.

Example 14

Write a program to find the greatest of the three numbers.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

3-38 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The following program will prompt the user to enter three numbers, compare them, and
display the greatest number on the screen.

//Write a program to find the greatest among the three numbers 1
#include <iostream> 2
using namespace std; 3
int main() 4
{ 5
int a,b,c; 6
cout< <“Enter three numbers” < <endl; 7
cin>>a>>b>>c; 8
if(a>b && a>c¢) 9
cout<<“a is the greatest number”<<endl; 10
else if(b>c) 11
cout<<“b is the greatest number” < <endl; 12
else 13
cout<<“c is the greatest number” < <endl; 14
return 0; 15
} 16
Explanation
Line 9

if(a>b && a>c)

In this statement, the logical AND operator is used. If both the conditions a>b and a>c
given in the statement are true, the control will be transferred to line 10. Otherwise, line 10
will be skipped and the control will be transferred to line 11.

The output of the program is as follows:
Enter three numbers

23

34

45

c is the greatest number

Control Statements 3-39

Self-Evaluation Test

Answer the following questions and then compare them to the answers given at the end of
this chapter:

I. A is a graphical representation of the steps that constitute a program.

2. The control the flow of execution in a program.

3. The statement is a case control statement.

4. The is used to repeat a particular block of code for a specific number of
times.

5. The statement is used to exit from any kind of loop or switch statement.

Review Questions

Answer the following questions:
1. The control structures specify the order of the execution of the statement. (T/F)
2. The if statement is a single path statement. (T/F)

3. In the switch statement, the flow of execution is controlled by a variable or an expression.
(T/F)

4. In the do-while loop, the body of the loop must be executed atleast once. (T/F)

5. The continue statement transfers the control outside the loop. (1/F)

Exercise 1

Using the if-else statement, write a program to find whether the number is even or odd.

Exercise 2

Write a program to find the square of the first ten natural numbers using the for loop.

Exercise 3

Write a program to display the day of a week according to the value entered by the user, using
the switch statement.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for details

3-40 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

Answers to Self-Evaluation Test
1. flowchart, 2. control structures, 3. switch, 4. for loop, 5. break

