Chapter 10

Inheritance

Learning Objectives

After completing this chapter, you will be able to:
* Understand inheritance.

* Understand single inheritance.

* Understand multilevel inheritance.

* Understand multiple inheritance.

* Understand hierarchical inheritance.

* Understand hybrid inheritance.

* Understand virtual base classes.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-2 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

INTRODUCTION

In this chapter, you will learn about another feature of OOP that is known as reusability.
Reusability provides a mechanism with which you can reuse something that already exists.
This mechanism saves time because you do not need to create the same thing again and
again. In C++, reusability is used in the case of classes. Once a class has been written and
debugged, it can be used in several ways. In C+ +, reusability is used by creating a new class
from an existing class by reusing its properties. The technique of creating a new class from an
old one is known as inheritance or derivation. The new class is known as derived class or
subclass and the old class (which is inherited) is known as base class. A derived class can
inherit some or all the properties of a base class. A derived class can also add some properties
on its own. The syntax for defining a derived class is as follows:

class derived_class_name : access_specifier base_class_name

data members;
access_specifier:
member functions;
b

In the above syntax, the name of the derived class is represented by derived_class_name.
Here, the colon (:) specifies that the derived class represented by derived_class_name is
derived from the base class represented by base_class_name. The access_specifier specifies
the visibility, which indicates how the data members and member functions of a base class
can be accessed by the objects of the derived class. An access specifier can be public or
private. If no access specifier is defined, it is private by default.

For example:

class derived_demo : public base_demo
{
data members of derived _demo;
public:
member functions of derived _demo;

}

In the above example, the base class base_demo is publicly inherited by the derived class
derived_demo. The public members of the base class can be accessed by the objects of the
derived class because they become public to the derived class.

A base class can be privately inherited, as shown in the following example:

class derived_demo : private base_demo
{
data members of derived demo;
public:
member functions of derived _demo;

5

Inheritance 10-3

OR
class derived_demo : base_demo//Private by default
{
data members of derived_demo;
public:
member functions of derived _demo;
¥

You can use any of the above examples for inheriting a base class. The base class base_demo
is privately inherited by the derived class derived_demo. The public members of the class
base_demo become private to the class derived_demo. They can only be accessed by member
functions of the derived class but they cannot be directly accessed by its objects.

In C++, inheritance is of the following five types:

Single inheritance
Multilevel inheritance
Multiple inheritance
Hierarchical inheritance
Hybrid inheritance

CU 0N =

Single Inheritance

When a class is inherited from a single base class, it is called single inheritance.
For example:

class base_demo

{
int a;//Private member
public:
int b;
void get(int x, int y)
a=x;
b=y;
b
void show();
b
class derived_demo : public base_demo
{
b

In the above example, the class derived_demo publicly inherits the properties from a single

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-4 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

base class base_demo. The private data member a of the base class base_demo cannot be
directly accessed by the objects of the class derived_demo. Figure 10-1 represents single
inheritance.

base_ demo

i

derived_ demo

Figure 10-1 Single inheritance
The following example illustrates the use of single inheritance (public).
Example 1
Write a program that will calculate the area of a rectangle.
The following program will calculate the area of a rectangle and display the resultant value

on the screen. The line numbers on the right are not a part of the program and are for
reference only.

//Write a program to find the area of a rectangle 1
#include <iostream> 2
using namespace std; 3
class rectangle 4
{ 5
int length; 6
public: 7
int width; 8
void getdata() 9

{ 10

length=10; 11

width=10; 12

} 13

int getlength() 14

{ 15

return length; 16

} 17

void show() 18

{ 19

cout<<"Length = "<<length< <endl; 20

cout< <"Width = "<<width<<endl; 21

¥ 22

5 23

class rect_area : public rectangle 24

{ 25

Inheritance 10-5

int result; 26

public: 27

void area() 28

{ 29

result= width * getlength(); 30

b 31

void display() 32

{ 33

cout<<"Length = "<<getlength()<<end]l; 34

cout<<"Width = "<<width<<end]l; 35

cout<<"Area = "<<result<<endl; 36

b 37

b 38

int main() 39

{ 40

rect_area rl; 41

rl.getdata(); 42

rl.area(); 43

rl.getlength(); 44

rl.display(); 45

rl.width=20; 46

rl.area(); 47

rl.display(); 48

return 0; 49

i 50
Explanation

Line 6

int length;

In this line, length is declared as an integer type variable. The variable length is the private
data member of the class rectangle. It can be accessed only with the help of the public
member functions of the same class.

Lines 14 to 17
int getlength()
{

return length;
}
These lines contain the definition of the member function getlength(). Whenever a call is
made to this function, it will return a value of the variable length.

Line 24

class rect_area : public rectangle

In this line, the class rect_area publicly inherits the properties (data member, member
functions) of the base class rectangle. Only the public data members and member functions
of the class rectangle (base class) are inherited by the objects of the class rect_area

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-6 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

(derived class). The private data members can also be accessed but only with the public
member functions of the class rectangle.

Line 26

int result;

The result is declared as an integer type variable. This data member is declared in the
private section of the class rect_area. It can be accessed directly by the objects of the same
class.

Lines 28 to 31
void area()
{

result= width * getlength();
}
These lines contain the definition of the member function area(). In the body of the function,
the public data member width of the base class rectangle is accessed directly but the private
data member length of the base class is accessed with the help of a public member function
getlength(). After multiplication, the resultant value is assigned to the variable result.

Line 41
rect_area rl;
Here, variable rl is declared as an object of the derived class rect_area.

Line 46

rl.width=20;

In this line, value 20 is assigned to the public data member width of the class rectangle,
which is directly accessed by an object rl of the derived class rect_area.

The output of the program is as follows:

Length = 10
Width =10
Area =100
Length = 10
Width = 20
Area =200

Figure 10-2 represents single inheritance (public), as discussed in Example 1.

Inheritance 10-7
Private: Private:
int length int result
Public: Public:
int width int width

void getdata()
int getlength()
void show()

class rectangle
(Base class)

void getdata()
int getlength()

void show()

void area() |
void display()

class rect-area
(Derived class)

Figure 10-2 Representation of Example 1

Inherited from base

class rectangle

Member functions

added by derived class

In the previous program, the base class rectangle was publicly inherited by the derived class
rect_area. In this section, you will learn about single inheritance with private derivation.
When a class is privately inherited, the public data members and member functions of the
base class become private in the derived class. So, these members are not directly accessed by
the objects of the derived class.

The following example illustrates the use of single inheritance (private).

Example 2

Write a program to calculate the area of a rectangle.

The following program will calculate the area of a rectangle and display the resultant value

on the screen.

//Write a program to calculate the area of a rectangle

#include <iostream>
using namespace std;

class rectangle

{

int length;

public:

int width;
void getdata()

{

cout<<“Enter the length of a rectangle: ”;
cin>>length;

cout< <“Enter the width of a rectangle: ”;
cin>>width;

© 00 IO Otk OO N —

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-8 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

int getlength() 16

{ 17

return length; 18

} 19

void show() 20

{ 21
cout<<"Length = "<<length< <endl; 22

cout<<"Width = "<<width<<endl; 23

} 24

b 25
class rect_area : private rectangle//Private derivation 26
{ 27
int result; 28

public: 29

void area() 30

{ 31

getdata(); 32

result= width * getlength(); 33

¥ 34

void display() 35

{ 36

show(); 37

cout< <"Result = "< <result< <endl,; 38

} 39

s 40
int main() 41
{ 42
rect_arearl; 43
rl.area(); 44
rl.display(); 45
return 0; 46

¥ 47

Explanation

Line 26

class rect_area : private rectangle

In this line, the base class rectangle is privately inherited by the derived class rect_area. Now,
the public members such as width, getlength(), and so on of the class rectangle become
private members of the derived class rect_area. So, the objects of the class rect_area do not
access these members directly.

The output of the program is as follows:
Enter the length of a rectangle: 10
Enter the width of a rectangle: 20
Length =10

Width = 20

Area = 200

Inheritance 10-9

The output will be displayed on the screen as follows:

e "e\C++\C++_programs\Ch_10%h10_pr... HEH

nter the length of a rectangle: 18
nter the width of a rectangle: 28
ength a

idth 28

esult = 200

ress any key to continue_

14 | AW

Figure 10-3 represents single inheritance (private), as discussed in Example 2.

Private: Private:

int length int result

Public: int width

int width void getdata() Inherited from base
void getdata() > int getlength() class rectangle

int getlength() void show()

void show() Public: |

void area() IMember functions

class rectangle void display() added by derived class

(Base class)

class rect-area
(Derived class)

Figure 10-3 Representation of Example 2

Making the Private Members of a Base Class Inheritable

In the earlier sections, you have seen that the private members of a base class cannot be
inherited and are not directly available to the derived class. In case the private data needs to
be inherited by a derived class, you can simply do it by modifying the visibility limit of a
private member by making it public or protected.

When the visibility limit of private members of a base class is changed to public, the members
are accessible by all the functions within the same class and also, by the functions of the other
classes. This method makes the members public, and this eliminates the feature of data
hiding.

Another way is to change the visibility limit of the private members of a base class by declaring
them as protected members. This results in only a limited access to the members of a class.
The protected members of a class are only accessed by the members of the same class and
any class that is immediately derived from it. The syntax for defining protected members in
the definition of a class is given next.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-10 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

class class_name

{
protected:
data members;
member functions();
b

In the above syntax, the protected members can be accessed by the members of the class
specified by class_name and by the members of the class that is immediately derived from
the class class_name.

When the protected members are inherited in the public mode, they become protected in
the derived class. So, they are directly accessed by the member functions of the derived class
and can be further inherited.

For example:

class rectangle

{
protected:
int length;
public:
int width;
void getdata();
void show();
b
class rect_area : public rectangle
{
int result;
public:
void area()
{
getdata();
result=width * length;
¥
void display();
b

In the above example, the class rectangle is publicly inherited by the class rect_area. The
protected member length in the base class rectangle becomes protected in the derived class
rect_area, as shown in Figure 10-4. So it can be directly accessed by the member functions of
the derived class, as shown in the following statement:

result=width * length;

Inheritance

10-11

In this statement, the protected data member length is directly accessed by the member
function area() in the derived class.

Private:
int length

Public:

int width

void getdata()
int getlength()
void show()

Private:
int result

Protected:
int length

Becomes protected in

class rectangle
(Base class)

Public:

the derived class

int width;
void getdata()

Inherited from base

int getlength()
void show()

class rectangle

void area()

| Member functions

void display()

class rect-area
(Derived class)

added by derived class

Figure 10-4 Protected members inherited in
the public mode

When the protected members are inherited in the private mode, they become private in the
derived class. They are accessed by the member functions of the derived class but they cannot
be further inherited. Figure 10-5 shows a representation of a protected member inherited in
the private mode.

Private: Private:
int length int result . .

- int length Becomes private in
PUbl{C: the derived class
int width Public:
void getdata() | int width;

Inherited from base
class rectangle

int getlength() void getdata()

void show() int getlength()

void show()

void area() | Member functions
void display() added by derived class

class rectangle
(Base class)

class rect-area
(Derived class)

Figure 10-5 Prolected members inherited in
the private mode

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-12 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

As shown in Figure 10-5, the protected data member length of the base class became private
in the derived class.

Abase class can also be inherited in the protected mode. The public and protected members
of the base class become protected in the derived class. So, they are directly accessed by the
member functions of the derived class and are also available for further inheritance.

For example:

class base_demo

{
inta; //By default private
protected:
int b;
public:
void getdata();
void show();
b
class derived_demo : protected base_demo
{
int c;
public:
int sum();
void display();
b

In the above example, the base class base_demo is inherited by the class derived_demo in
the protected mode. The protected data member b and the public member functions,
getdata() and show() become protected members of the class derived_demo, as shown in
Figure 10-6.

Private: Private:

nt a mnt c

li);?;)eaed' E’?Leaed: Inherited from the

. base class and
Public: »| void getdata() becomes protected
void getdata() void show() in the derived class
void show() Public:
int sum()

class base_demo void display()

class derived_demo

Figure 10-6 A base class inherited in the
protected mode

Inheritance 10-13

Multilevel Inheritance

When a class is derived from another derived class, it is known as multilevel inheritance, as
shown in Figure 10-7.

Base class

Intermediate base
class

Derived class

Figure 10-7 Multilevel inheritance

In the above figure, the class base_demo represents the base class, which is inherited by
another class inter_base. Now, the derived class inter_base is inherited by another class
derived_demo. Here, the inter_base class works as a base class for the class derived_demo.
The class inter_base is also known as the intermediate base class.

The syntax for declaring classes that contain multilevel inheritance is as follows:

class base_demo

{
data members;
public:
member functions;
s
class inter_demo : public base_demo
{
data members;
public:
member functions;
s
class derived_demo : public inter_demo
{
data members;
public:
member functions;
s

In the above syntax, the class base_demo represents the base class, which is publicly inherited
by another class inter_demo. Now, the class inter_demo is publicly inherited by another
class derived_demo. Here, the class inter_demo serve as a base class for the class
derived_demo.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-14 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The following example illustrates the use of multilevel inheritance.

Example 3
Write a program to calculate the average of points by using multilevel inheritance.
The following program will prompt the users to enter their information and also the points

scored in three subjects. The program will then calculate the average and display the
information as well as the average on the screen.

//Write a program to calculate the average of the points entered by the user 1
#include <iostream> 2
using namespace std; 3
class student//Base class 4
{ 5
char name[30]; 6
int stu_id; 7
char course[10]; 8
public: 9
void getdata(); 10
void showdata(); 11
b 12
void student :: getdata() 13
{ 14
cout< <“Enter name: ”; 15
cin>>name; 16
cout< <“Enter the student ID: ”; 17
cin>>stu_id; 18
cout< <“Enter course: ”; 19
cin> >course; 20
} 21
void student :: showdata() 22
{ 23
cout< <“Name: "<<name<<endl; 24
cout<<“Student ID: "< <stu_id<<endl; 25
cout< <“Course: "< <course<<endl; 26
} 27
class points : public student//First level of inheritance 28
29
protected: 30
float sub[3]; 31
public: 32
void get_points(); 33
void show_points(); 34

-
o
(14

Inheritance

void points :: get_points()

{
for(int 1=0; 1<3; 1++)
{
cout<<“Enter the points scored in subject”<<i+1<<:”
cin> >subl[i];
}
}
void points :: show_points()
{
for(int j=0; j<3; j++)
{
cout< <“Points scored in subject”<<j+1<<" are: 7;
cout< <subl[j]<<endl;
}
}

class average : public points//Second level of inheritance

{

float avrg;
public:
void result();
b
void average :: result()
{
avrg= (sub[0]+sub[1]+sub[2])/3;
showdata();
show_points();
cout< <“Average: "< <avrg<<endl;
b
int main()
{
average al;
al.getdata();
al.get_points();
cout< <* "< <endl;
al.result();
return 0;
b
Explanation

Lines 4 to 12

class student

{
char name[30];
int stu_id;
char course[10];

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-16 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

public:
void getdata();
void showdata();
}s
These lines contain the definition of the class student, which contains three data members
name, stu_id, course and two member functions, getdata() and showdata(). Here, the class
student is treated as a base class.

Lines 28 to 35
class points : public student

{
protected:
float sub[3];
public:
void get_points();
void show_points();
b

The class points publicly inherits the properties of the base class student. So, the private
data members of the base class student are not directly accessed by the objects of the derived
class points. The definition of the class points contains a protected data member sub, which
is an array of a float type with the maximum size 3. It also contains two member functions,
get_points() and show_points(). After inheritance, the class points contains data members
and member functions, as shown in Figure 10-8.

Private: Protected:
char name[30] float sub[3]
int stu_id publicly Public:

char course[10] | jpherited |void get_points()
Public: void show_points()

void getdata() voi.d getdata() —:llnherited from base
void showdata() void showdata() — class student

A

class student
(Base class)

class points
(Derived class)

Figure 10-8 First level of inheritance

The above figure represents the first level of inheritance in which the base class student is
inherited by the class points. After public inheritance, the public members of the base class
become the public members of the derived class.

Inheritance 10-17

Lines 52 to 57
class average : public points
{

float avrg;

public:

void result();

}s
The derived class points is treated as a base class for the class average. The class average
publicly inherits the properties of the class points. So, the protected members of the class
points can be directly accessed by the objects of the derived class average. After inheritance,
the class average contains data members and member functions, as shown in Figure 10-9.

Protected: Private:
float sub[3] float avrg
Public: Protected:

void get_points() float sub[3]

. . ublicl
void show_points() E)nheritz 4 |Public:
void getdata() » void result()
void showdata() void get_points() —

void show_points() IInherited from class points

void getdata() — Inherited from class
void showdata()—:I student via class points

class points class average

Figure 10-9 Second level of inheritance

The above figure represents the second level of inheritance in which the derived class points
is inherited by another class average. Here, the class points, which is a derived class, is
treated as a base class for the class average.

Line 67
average al;
In this line, the variable al is declared as an object of the class average.

Line 68

al.getdata();

In the first level of inheritance, all the public members of the base class student become
public members of the derived class points. In the second level, all the public members of
the class points become public members of the class average. So now, the getdata() member
function is directly accessed by an object al of the class average.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-18

Learning C++ Programming Concepts (Eval Copy C++ 02/07)

The output of the program is as follows:
Enter name: John
Enter the student ID: 201

Enter course:

MBA

Enter the points scored in subjectl: 78
Enter the points scored in subject2: 80
Enter the points scored in subject3: 82

Name: John

Student ID: 201

Course: MBA

Points scored in subject] are: 78
Points scored in subject2 are: 80
Points scored in subject3 are: 82

Average: 80

The output will be displayed on the screen as follows:

=+ "e:VC++\C+ +_programs\Ch_10\ch10_pro03\Debu...

nter name: John

nter student ID:
nter course: MBA

nter the points
nter the points
nter the points

LI

281

scored in subjectl: 78
scored in subject2: 8@
scored in subject3: 82

Name : John
Student ID: 281
Course: MBA
Points scored in
Points scored in
Points scored in
fverage: 88
Press any key to

4|

subjectl are: 78
subject2 are: B@
subject3d are: 82

continue

Multiple Inheritance

When a class inherits the properties from two or more base classes, it is known as multiple
inheritance. In multiple inheritance, a class is derived by inheriting the properties of two or
more than two base classes, as shown in Figure 10-10.

Base_class 1 | | Base_class 2 | | Base class 3 | | Base_class 4

Figure 10-10 Representation of multiple
inheritance

Inheritance 10-19

This figure represents multiple inheritance. In this figure, the derived class, which is specified
by Derived_class, inherits the properties from the base classes specified by Base_classl to
Base_classN.

The syntax is as follows:

class Derived_class : access_specifier Base_class1,, access_specifier Base_classN
data_members;
public:
member functions;

b

In this syntax, the base classes that are specified by Base_class1 to Base_classN are separated
by commas.

For example:

class average : public student, public points
{
float avrg;
public:
void result();

b

In the above example, the class average publicly inherits the properties of two classes
student and points.

The following example illustrates the use of multiple inheritance.

Example 4

Write a program to calculate the average of points by using multiple inheritance.

The following program will prompt the users to enter their information and also the points
scored in three subjects. The program will then calculate the average and display the
information as well as the average on the screen.

//Write a program to calculate the average of the points entered by the user
#include <iostream>
using namespace std;
class student
{
char name[30];
int stu_id;
char course[10];

WL T O Ot OO N —

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-20 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

public:
void getdata();
void showdata();

b
void student :: getdata()
{
cout< <“Enter name: ”;
cin>>name;
cout< <“Enter the student ID: ”;
cin>>stu_id;
cout< <“Enter course: ”;
cin> >course;
}
void student :: showdata()
{
cout< <“Name: "< <name< <endl,;
cout<<“Student ID: "< <stu_id<<endl;
cout< <“Course: "< <course<<endl;
}
class points
{
protected:
float sub[3];
public:
void get_points();
void show_points();
b
void marks :: get_points()
{
for(int 1=0; 1<3;1++)
{
cout<<“Enter the points scored in subject”’<<i+1<<“:”
cin>>subl[i];
}
}
void marks :: show_points()
{
for(int j=0; j<3; j++)
{
cout<<“Points scored in subject”<<j+1<<" are: ”;
cout< <subl[j]< <endl;
}
}
class average : public student, public points
{
float avrg;

public:

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Inheritance 10-21

void result(); 56

b 57

void average :: result() 58

{ 59

avrg = (sub[0]+sub[1]+sub[2])/3; 60

showdata(); 61

show_points(); 62

cout<<“Average: "< <avrg<<endl; 63

b 64

int main() 65

{ 66

average al; 67

al.getdata(); 68

al.get_points(); 69

cout< <* ’< <endl; 70

al.result(); 71

return 0; 72

b 73
Explanation

Line 52

class average : public student, public points

Here, the class average publicly inherits the properties of the class student and the class
points. After inheritance, the class average contains data members and member functions,
as shown in Figure 10-11.

The output of the program is as follows:
Enter name: John

Enter student ID: 201

Enter course: MBA

Enter the points scored in subjectl: 78
Enter the points scored in subject2: 80
Enter the points scored in subject3: 82

Name: John

Student ID: 201

Course: MBA

Points scored in subject] are: 78
Points scored in subject2 are: 80
Points scored in subject3 are: 82
Average: 80

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-22 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

class student class points
Private: Protected:
char name[30] float sub[3]
int stu_id Public:
char course[10] void get_points()

Public: void show_points()

void getdata()
void showdata()

A l

Private:

float avrg

flil(;(;ttescii?é] Inherited from
class points

Public:

void result()

void getdata() lInherited from

void showdata() class student

void get_points() IInherite.d from

void show_points() class points

class average

Figure 10-11 Members of the class average after
inheritance

In multiple inheritance, when a class inherits the properties from more than one base class,
the problem of ambiguity may occur. When a function with the same syntax (same name,
same return type) exists in more than one base class, it is known as ambiguity.

For example:
class A
{
public:
void display()
{

cout< <“You are in class A”< <endl;

Inheritance 10-23

class B
{
public:
void display()
{
cout< <“You are in class B”<<endl;

i

s

In the above code, both the classes A and B contain a member function void display() whose
syntax is the same in both the classes.

class C : public A, public B

{
public:
void show()
{
display();
}
b

The class C publicly inherits the properties from the base classes A and B. When a call is
made to the function display() in the public member function show() in class G, it will give
an error. This error is because of an ambiguity in the program. This ambiguity can be removed
by using the name of a class and a scope resolution operator (::) with a name of the function,
as follows:

class C : public A, public B

{
public:
void show()
{
Az display();
b
b

In the above code, the class name A and the scope resolution operator (::) is used with the
function display(). This means that the member function display() of the class A will be
called whenever a call is made to the function show() of the class C.

In the above case, you have seen that the problem of ambiguity arises when a single class
inherits the properties from more than one base class. This problem can also arise in the case
of single inheritance in which a single class inherits the properties from a single base class.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-24 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

For example:

class X
{
public:
void show()
{
cout< <“You are in class A”< <endl;
}
s
class Y : public X
{
public:
void show()
{
cout< <“You are in class B”<<endl;
}
s

In this example, the member function show() of the derived class Y overrides the member
function show() of the base class X. So, whenever a call is made to the show() function with
an object of class Y, the compiler will invoke the show() function defined in the derived
class.

You can also invoke the function defined in the base class by specifying the class name and a
scope resolution operator with the function name, as follows:

int main()

{
Yyl;
yl.show();//make a call to show() in derived class Y
y1.X::show();//make a call to show() in base class X
y1.Y::show();//make a call to show() in derived class Y
return 0;

}

Hierarchical Inheritance

In hierarchical inheritance, the classes are arranged in a hierarchy based on the properties
they contain. The base class is at the top of the hierarchy and contains all the properties that
are common to the subclasses. A subclass can be derived by inheriting the properties of the
base class. In hierarchical inheritance, a subclass can function as a base class for the lower
level of classes. Figure 10-12 represents a hierarchical classification of students in a college.
In this figure, the Students class contains the properties that are common to the subclasses
(Management, Computers, and Engineering). The Management class serves as a base class
for the lower level of classes (Marketing, Finance, and Human Resource).

Inheritance 10-25

Students
|Management| | Computers | | Engineering
|Mar]keﬁmg | | Finance | |Humachs0mrce|

Figure 10-12 Representation of hierarchical inheritance

Hybrid Inheritance

In general terms, a variety, which is a composite of mixed origins is called a hybrid form. In
the same way, in C++, when two or more than two types of inheritances are used to design a
program, it is known as hybrid inheritance. For example, if in a program two types of
inheritance, multilevel and multiple are used, this mixed type of inheritance is known as
hybrid inheritance, see Figure 10-13.

candidate
written_test

‘ interview | |experience |

final_result

Figure 10-13 Example of hybrid inheritance

The following example illustrates the use of hybrid inheritance.

Example 5

Write a program to calculate the final result of candidates in an interview by using hybrid
inheritance.

The following program will prompt the user to enter his information and the points scored
in the tests, calculate the final result, and display it on the screen.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-26 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

//Write a program to illustrate the working of hybrid inheritance
#include<iostream>
using namespace std;
class candidate
{
protected:
char name[20];
int ref num;
public:
void getdata()
{
cout< <“Enter the name of the candidate: ”;
cin>>name;
cout< <“Enter the reference number: ”;
cin>>ref num;
¥
void showdata()
{
cout< <“Name: "< <name< <endl,;
cout< <“Reference number: "< <ref num<<endl;
¥
b

class written_test : public candidate//Level 1 of multilevel inheritance
{
protected:
float apt_points;
float tech_points;
public:
void getpoints()

cout<<“Enter the points scored in the Aptitude test: ”;
cin>>apt_points;

cout<<“Enter the points scored in the Technical test: ”;
cin>>tech_points;
}
void showpoints()
{
cout< <“Points scored in the Aptitude test are: ”
<<apt_points< <endl;
cout< <“Points scored in the Technical test are: ”
<<tech_points;
cout< <endl;
}
b
class interview: public written_test//Level 2
{

protected:

© 00 IO Ok O N —

QO N NO RO RO RO NO NO NO NO ND b= b et et et et e ek e e
OO XTI TR LON = OO I Tk N —O

31
32
33
34
35
36
37

38

39
40
41
42
43
44
45

Inheritance

10-27

float tech_score;
float hr_score;
public:
void getscore()

cout<<“Enter the points scored ”
“in the Technical interview: ”;
cin>>tech_score;

cout<<“Enter the points scored in the HR interview: ”

cin>>hr_score;

}
void showscore()
{
cout< <“Points scored in the Technical interview are: ”
<<tech_score<<end];
cout< <“Points scored in the HR interview are: ”
<<hr_score<<endl;
}
¥
class experience
{
protected:
float years;
public:
void get_exp()
{
cout<<“Enter experience: ”;
cin> >years;
}
void show_exp()
{
cout<<“Experience in years: "< <years<<endl;
}
¥

class final_result: public interview, public experience//Multiple inheritance
{
float result;
public:
void show_result();
¥
void final_result:: show_result()
{
result= apt_points + tech_points + tech_score + hr_score + years;
showdata();
showpoints();
showscore();
show_exp();

46
47
48
49
50

51
52
53
54
55
56
57

58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-28 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

cout< <“Total score: "< <result<<endl; 90
¥ 91
int main() 92
{ 93
final_result candidate 1; 94
candidate_1.getdata(); 95
candidate_1.getpoints(); 96
candidate_1.getscore(); 97
candidate_1.get_exp(); 98
candidate_1.show_result(); 99
return 0; 100
} 101

The output of the program is as follows:

Enter the name of the candidate: John

Enter the reference number: 101

Enter the points scored in the Aptitude test: 5
Enter the points scored in the Technical test: 6
Enter the points scored in the Technical interview: 6
Enter the points scored in the HR interview: 7
Enter experience: 1

Name: John

Reference number: 101

Points scored in the Aptitude test are: 5

Points scored in the Technical test are: 6

Points scored in the Technical interview are: 6
Points scored in the HR interview are: 7
Experience in years: 1

Total score: 25

The output will be displayed on the screen as follows:

& "e:\C++\C++_programs\Ch_10\ch10_pro05\Debugch10_pro... =13 |

Enter the name of the candidate: John -
Enter the reference number:

Enter the points scored in the Aptitude test: 5
Enter the points scored in the Technical test: 6
Enter the points scored in the Technical interview: 6
Enter the points scored in the HR interview:

Enter experience: 1

Name: John

Reference number: 1681

Points scored in the Aptitude test is: §

Points scored in the Technical test is: 6

oints scored in the Technical interview is: 6

'oints scored in the HR interview is: 7

Experience in years: 1

Total score: 25

Press any key to continue

< | X 4

VIRTUAL BASE CLASSES

In the previous section, you learned about hybrid inheritance, in which two or more than two
types of inheritances were used to design a program. But sometimes, when all the three types
of inheritances multiple, multilevel, and hierarchical are used in hybrid inheritance to design
a program, a problem of ambiguity may occur, see Figure 10-14.

Inheritance 10-29

i

Figure 10-14 Multipath inheritance

In the above figure, classes B and C both inherit the base class A, whereas the class D inherits
the classes B and C. Here, the class D indirectly inherits the properties of the base class A
twice through classes B and C. So, all the public and the protected members of the base class
A are inherited twice by the class D. Therefore, the class D contains duplicate copies of the
members of the base class A. This problem of duplicacy or ambiguity can be solved by declaring
the base class A as a virtual class.

When a common base class is declared as a virtual base class, only one copy of that class is
inherited by the derived class through all the multiple paths. The syntax for declaring a
virtual base class is as follows:

class A
{
class definition;
il;ass B : public virtual A
{ class definition;
il;ass C : virtual public A
{ class definition;
il;ass D : public B, public C
{ class definition;
¥

In the above syntax, the base class A is declared as a virtual base class, which is publicly
inherited by the classes B and C. Here, class B and C are publicly inherited by the derived
class D. The class D indirectly inherits the base class A through the two paths, but class D
contains only one copy of the members of the base class A. This is because the base class A
has been declared as a virtual base class.

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-30 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

In the previous syntax, the following statements
public virtual A
or
virtual public A
are the same. You can use the keyword virtual before or after the access specifier.
The following example illustrates the use of the virtual base class.
Example 6

Write a program to illustrate the working of the virtual base class.

The following program will multiply three numbers and display the resultant value on the
screen.

//Write a program to multiply three numbers 1
#include <iostream> 2
using namespace std; 3
class A 4
{ 5
public: 6
int a; 7
5 8
class B : public virtual A 9
{ 10
public: 11
int b; 12
5 13
class C : virtual public A 14
{ 15
public: 16
int ¢; 17
5 18
class D : public B, public C 19
{ 20
public: 21
int mul; 22
15 23
int main() 24
{ 25
D dl; 26
dl.a=10; 27
d1.b=10; 28
dl.c=10; 29

dl.mul=dl.a *dl.b *dl.c 30

Inheritance 10-31

}

cout<<“The result of multiplication is: ”<<dl.mul<<endl; 31
return 0; 32
33

The output of the program is as follows:
The result of multiplication is: 1000

Self-Evaluation Test

Answer the following questions and then compare them to the answers given at the end of
this chapter:

1.

2.

3.

4.

5.

The technique of creating a new class from an existing class is known as
A class can inherit some or all the properties of a class.

When a class is privately inherited, the public members of the base class become
in the derived class.

When a class is derived from another derived class, it is known as inheritance.

The problem that occurs during multiple inheritance is known as

Review Questions

Answer the following questions:

1.

2.

Define inheritance. What is the main advantage of inheritance?
Explain the different types of inheritance.

Differentiate between public and private members of a class. Explain the difference with
a suitable example.

Explain multiple inheritance with a suitable example. What is the main problem that
occurs during multiple inheritance?

What do you mean by a virtual base class?

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

Evaluation Chapter. Do not copy. Visit www.cadcim.com for detalls

10-32 Learning C++ Programming Concepts (Eval Copy C++ 02/07)

Exercise 1

Write a program to calculate the final result of some students. This program should contain
the four classes, which are discussed next.

1.

Class student, which contains two protected data members, student_id, and name. It
should also contain public member functions to accept the values of the data members
from the user and display them on the screen. The class student should be declared as
the virtual base class.

Class test, which publicly inherits the properties of the base class student. This class
should contain a data member, test_points and also two member functions to read the
points scored from the user and display them on the screen.

Class exam, which publicly inherits the properties of the base class student. This class
should contain a data member, final_points and also two member functions to read the
points scored from the user and display them on the screen.

Class result, which publicly inherits both the classes, test and exam. This class should
contain a data member, total_result and also two member functions to calculate the final
result of the student and display it on the screen.

Answers to Self-Evaluation Test
1. inheritance, 2. derived, base, 3. private, 4. multilevel, 5. ambiguity

